Parameterized Complexity of Stabbing Rectangles and Squares in the Plane

Michael Dom¹

Michael R. Fellows^{2,3} Frances A. Rosamond^{2,3}

¹Institut für Informatik, Friedrich-Schiller-Universität Jena, Germany ²PC Research Unit, University of Newcastle, Australia

WALCOM 2009

³Supported by the Australian Research Council and the Alexander von Humboldt-Foundation, Germany

Rectangle Stabbing

Rectangle Stabbing

Rectangle Stabbing

Rectangle Stabbing

Input: A set R of axis-parallel rectangles, a set L of axis-parallel

lines, a positive integer k.

Question: Exists $L' \subseteq L$ with $|L'| \le k$ such that every rectangle

from R is intersected by at least one line from L'?

3-Dimensional Rectangle Stabbing

Generalization to *d* dimensions: *d*-Dimensional Rectangle Stabbing.

3-Dimensional Rectangle Stabbing

Generalization to *d* dimensions: *d*-Dimensional Rectangle Stabbing.

Set Cover

Set Cover

Input: A binary matrix M, a positive integer k.

Question: Is there a set of at most k columns

that hits a 1 in every row?

Set Cover

Set Cover

Input: A binary matrix M, a positive integer k.

Question: Is there a set of at most k columns

that hits a 1 in every row?

Rectangle Stabbing and Set Cover

Rectangle Stabbing and Set Cover

Variants of the Consecutive-Ones Property

Restricted Variants of Set Cover

2-SC1P-Set Cover and Rectangle Stabbing are equivalent.

Both problems are NP-complete.

[Gaur et al., *J. Algorithms, '02*, Mecke et al., *ATMOS '05*, Dom and Sikdar, *FAW '08*]

Parameterized Complexity

▶ Main idea: Measure complexity not only in input size, but also in an additional "parameter" k.

► Problem is *fixed-parameter tractable (FPT)* with respect to a parameter *k*

problem is solvable in $f(k) \cdot n^{O(1)}$ time.

Example: $O(2^k \cdot n^2)$ Not FPT: $O(n^k)$

▶ W[1]-hardness: concept for parameterized intractability

Known Results

- ► Factor-d2^{d-1} approximation for d-Dimensional Rectangle Stabbing when all hyperrectangles are identical [Hassin and Megiddo, *Discrete Appl. Math., '91*]
- ► Factor-*d* approximation for *d*-Dimensional Rectangle Stabbing [Gaur et al., *J. Algorithms, '02*]
- ► Factor-*d* approximation for *d*-C1P-Set Cover [Mecke et al., *ATMOS '05*]
- Approximation algorithms for 2-Dimensional Rectangle Stabbing when every rectangle has height or width one [Hassin and Megiddo, Discrete Appl. Math., '91, Kovaleva and Spieksma, ISAAC '01, SIAM J. Discrete Math., '06]
- ➤ 3-Dimensional Rectangle Stabbing is W[1]-hard [Dom and Sikdar, FAW '08]
- Special cases of Rectangle Stabbing are in FPT [Dom and Sikdar, FAW '08]
- ▶ Open: Parameterized complexity of Rectangle Stabbing

Our Main Results

- ▶ Rectangle Stabbing is W[1]-hard.
- ► Rectangle Stabbing is W[1]-hard if all rectangles are squares of the same size.
- Rectangle Stabbing is in FPT
 if all rectangles are nonoverlapping squares of the same size.

Our Main Results

- ► Rectangle Stabbing is W[1]-hard.
- ► Rectangle Stabbing is W[1]-hard if all rectangles are squares of the same size.
- Rectangle Stabbing is in FPT
 if all rectangles are nonoverlapping squares of the same size.

2-SC1P-Set Cover

Input: A binary matrix M with 2-SC1P, a positive integer k.

Question: Is there a set of at most k columns

that hits a 1 in every row?

Parameterized reduction:

► Same basic idea as polynomial-time reduction: Reduce from a hard problem.

$$(x,k) \rightsquigarrow (x',k')$$

▶ New parameter must depend only on the old parameter:

$$k' = f(k)$$

▶ (Reduction may cost $g(k) \cdot n^{O(1)}$ time.)

Reduction from the W[1]-hard problem Multicolored Clique.

Multicolored Clique

Input: A positive integer k and a k-colored undirected graph.

Question: Is there a clique of size k?

Reduction from the W[1]-hard problem Multicolored Clique.

Multicolored Clique

Input: A positive integer *k* and a *k*-colored undirected graph.

Question: Is there a clique of size k?

Reformulation of Multicolored Clique:

[Fellows et al., manuscript, 2008]

Question: Is there a set E' of $\binom{k}{2}$ edges and a set V' of k vertices such that

- ► E' contains an edge of every "edge color",
- V' contains a vertex of every color, and

Question: Is there a set E' of $\binom{k}{2}$ edges and a set V' of k vertices such that

- ► E' contains an edge of every "edge color",
- ▶ V' contains a vertex of every color, and
- $\blacktriangleright \{v,w\} \in E' \rightarrow v,w \in V' ?$

Approach for the reduction to 2-SC1P-Set Cover:

- one column for every edge and every vertex
- ▶ number of columns to select: $\binom{k}{2} + k$
- rows to enforce the three constraints

- ► E' contains an edge of every "edge color",
- ightharpoonup V' contains a vertex of every color, and
- $\blacktriangleright \{v,w\} \in E' \rightarrow v,w \in V' ?$

	Л_	_			blue v ₇ v ₈ v ₉	
1 1	. 1	1				
				1 1		
					111	
1	1	1		1		
1	1	1			1	

Number of columns to select: $\binom{k}{2} + k$.

- ► E' contains an edge of every "edge color",
- ightharpoonup V' contains a vertex of every color, and
- $\blacktriangleright \ \{v,w\} \in E' \ \rightarrow \ v,w \in V' \ ?$

 {re	ed,	bl	ue}	 	red	 blue	ı
 e ₄	e ₅	e ₆	e ₇ `	 	V_2 V_3	 V ₇ V ₈ V ₉	
1	1	1	1				
					1 1		
						111	
1		1	1		1		
1		1	1			1	

Number of columns to select: $\binom{k}{2} + k$.

	{red, blue}				red		blue	
	e ₄ e ₅ e ₆ e ₇				V_2 V_3		v ₇ v ₈ v ₉	
	1111	111						
					1 1		111	
	111 111 1 11 1 11 1 1 1 11 1 111 1				1 1 1 1		1 1 1	
		1 1 1 1 1 1 1 1 1 1 1 1						
Mia	hael Dom Univers	ität lana. Das		and labelier			· · ·	≜ ▶ ∢

					{ <u>red</u> , <u>blue</u> }
 <i>e</i> ₄ <i>e</i> ₅ <i>e</i> ₆ <i>e</i> ₇	<i>e</i> ₄ <i>e</i> ₅ <i>e</i> ₆ <i>e</i> ₇	 	<i>V</i> ₂ <i>V</i> ₃	 V ₇ V ₈ V ₉	 \ldots e_4 e_5 e_6 e_7 \ldots
1111	1111				1111
			1 1	111	
1 11 111 111 111					1 1 1 1 1 1 1 1 1 1 1 1 1 1
_	1 11 111 111 111 11				1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1	1 1		1	1	#col's to select $3 \cdot {k \choose 2} + k$

 $\{ red, $	blue]	{red, blue	}		red	ļ	blue	ļ	$ \begin{array}{c} $	}
 e ₄ e ₅	e ₆ e ₇	<i>e</i> ₄ <i>e</i> ₅ <i>e</i> ₆ <i>e</i> ₇			<i>v</i> ₂ <i>v</i> ₃		v ₇ v ₈ v ₉		e ₄ e ₅ e ₆ e ₇	
1 1	1 1	1111							1111	
					1 1		111		1111	
1 1 1 1 1	1								1 1 1 1 1 1	
1	1 1 1 1 1								1 11 111	
		1 11 111							111	
		111 11 1							$egin{array}{c c} 1 \\ 1 \ 1 \\ 1 \ 1 \ 1 \end{array}$	
	1 1 1 1	1 1			1		1		#col's to se $3 \cdot {k \choose 2} + k$	elect:
Mic	chael Do	om, Universität	Jena:	 Rectan	gle Stabb	ing	I	b > -	[(2)	_

 	{re	ed,	blue	∦r€	ed,	blue)			red		blue		 	{re	d,	blue}	
	e_4	e ₅	e ₆ e ₇	e_4	e ₅	e ₆ e ₇			v_2 v_3		v ₇ v ₈ v ₉			e_4	e ₅	$e_6 e_7$	
	1	1	1 1	1	1	1 1								1	1	1 1	
									1 1		111					1 1	
	$\begin{vmatrix} 1\\1\\1 \end{vmatrix}$	1	1 1 1 1 1											1 1	_	1 1 1 1 1	
			1	1												1 1 1	
				1	1	1 1 1 1 1 1 1								1 1 1	1 1	1 1 1	
			1 1 1 1	1 1					1		1					o sel	
	1			1			I	•	1	1	I	1		J. 1	\sim	, i r	

	_												
 {re	d,blue	{re	d,blue	}	ļ	red		blue		 	{re	d, blu	€}
	$\overline{}$		$\overline{}$			\sim		V ₇ V ₈ V ₉		ı			\neg I
1	111	1	111								1	111	
						1 1		111					
1 1 1	1 1 1 1 1 1										1	1 1 1 1 1 1	
	11										1	1 1 1	
		_	1 1 1 1 1 1								1	1 1 1 1 1 1	
			1 1 1								1 1	1 1	
	1 1 1 1	1				1		1					
	Michael Do	m, L	Iniversität	Jena: I	Rectan	gle Stabb	ing		.	- ₽		> ∢≣	▶ ■

 ,	$\{$ red $,$	Ы	ue}	$\{$ red $,$	Ы	ue)			red	ı	blue v ₇ v ₈ v ₉	ļ	 	{red	, bl	ue}	}
	e ₄ e ₅	<i>e</i> ₆	e_7	$e_4 e_5$	<i>e</i> ₆	e ₇			v_2 v_3		V ₇ V ₈ V ₉			$e_4 e_5$	<i>e</i> ₆	e_7	
	1 1	1	1	1 1	1	1								1 1	1	1	
									1 1		111						
	1 11 11 11		1											1	1	1 1 1	
	1	1	1											1 1	1		
				1 11 11 1		1								1 1 1 1 1	1		
		1		1		1			1					1 1	1		
	Mi	1		1	/ersi	tät	lena: l	Rectan	gle Stabb	ing	1	- ·		(重)		를 →	Ē

 {re	d,	blι	ıe}	{re	d,	blue)	· · ·		red	ļ	blue v ₇ v ₈ v ₉	ļ		{re	ed,	blue	}	
 e_4	e ₅	e ₆ (e ₇	e_4	e_5	e ₆ e ₇			v_2 v_3		V ₇ V ₈ V ₉		ļ	e ₄	e ₅	$e_6 e_7$		
1	1	1 :	1	1	1	11								1	1	1 1		
									1 1		111							
1 1 1		1 1 : 1 :												1 1 1	1	1 1 1 1 1		
				1 1 1	_	1 1 1 1 1 1 1								1 1 1	1	1 1 1 1 1		
		1 : 1 :	1 1	1 1					1		1							
	Mic	hael	Do	m, l	Jniv	versität .	Jena: I	Rectan	gle Stabb	ing	4	b ,	- →	4 3	Ţ	(≣)	₽	6

 {re	d,	blue]	{re	d,	blue)	·	 re	ed		b	lu	е	 	{red	, blue	}
 e_4	e ₅	$e_6 e_7$	e_4	e ₅	e ₆ e ₇		 v_2	<i>V</i> 3		v_7	<i>V</i> ₈	V 9	 	e ₄ e	$e_6 e_7$	
1	1	11	1	1	1 1									1 :	111	
							1	1		1	1	1				
1 1 1	1	1 1												1	1 1 1 1 1 1	
		1 1 1												1 : 1 :	1	
			1 1 1	1	1 1									1	1 1 1 1 1 1	
					1 1 1									1 : 1 :	l l 1	
		$\begin{array}{c} 1 \ 1 \\ 1 \ 1 \end{array}$	1 1				1				1					

{red, l	$\frac{\text{plue}}{e_6} \underbrace{\{\text{red}, \text{blue}\}}_{e_6} \underbrace{\{e_6, e_7\}}_{e_6} \underbrace{\{e_6, e_7\}}_{e_7} \underbrace$	}	__	red		blue	ļ	 	{red, blue	}
$ \dots e_4 e_5 \epsilon$	$e_6 e_7 e_4 e_5 e_6 e_7$	`	v	2 V3		v ₇ v ₈ v ₉			e ₄ e ₅ e ₆ e ₇	
111	1111								1111	
				1 1		111				
	1 1 1 1 1 1 1								111 11 1 1 11 111	
	1 11 111 111 111								111 11 1 1 11 111	
	1 1 1 1 1 1			1		1				
Mich	nael Dom, Universität	lena: F	Rectangle	Stabbi	nσ	∢	- -	a •	∢ ≣ ≯ ∢ ≣ ≯	重

Theorem

2-SC1P-Set Cover, 2-C1P-Set Cover, and Rectangle Stabbing are W[1]-hard with respect to the parameter k.

With a similar reduction:

Theorem

Rectangle Stabbing is W[1]-hard with respect to the parameter k if all rectangles are squares of the same size.

Our Main Results

- Rectangle Stabbing is W[1]-hard.
- Rectangle Stabbing is W[1]-hard if all rectangles are squares of the same size.
- Rectangle Stabbing is in FPT if all rectangles are nonoverlapping squares of the same size.

Restrictions:

- ▶ There is a number *b* such that each rectangle is intersected by exactly *b* vertical lines and exactly *b* horizontal lines.
- No two rectangles are intersected by a common vertical line and a common horizontal line.

Use data reduction rules:

1. Delete "dominated" lines.

Use data reduction rules:

1. Delete "dominated" lines.

Use data reduction rules:

1. Delete "dominated" lines.

Use data reduction rules:

- 1. Delete "dominated" lines.
- 2. Delete "unnecessary" rectangles.

Use data reduction rules:

- 1. Delete "dominated" lines.
- 2. Delete "unnecessary" rectangles.

Use data reduction rules:

- 1. Delete "dominated" lines.
- 2. Delete "unnecessary" rectangles.

Properties of reduced problem instances:

1. At each vertical line, there "ends" at least one rectangle.

Properties of reduced problem instances:

- 1. At each vertical line, there "ends" at least one rectangle.
- 2. At each vertical line, there end at most k + 1 rectangles.

Properties of reduced problem instances:

- 1. At each vertical line, there "ends" at least one rectangle.
- 2. At each vertical line, there end at most k + 1 rectangles.
- 3. No rectangle starts later *and* ends earlier than another one.

Properties of reduced problem instances:

Lemma

Either each rectangle is intersected by at most 2k + 1 vertical lines or

there is a vertical line that intersects more than k rectangles, such that each of these rectangles is intersected by at most 2k+1 vertical lines.

Theorem

Rectangle Stabbing can be solved in $(4k+1)^k \cdot n^{O(1)}$ time if all rectangles are nonoverlapping squares of the same size.

We know: Rectangle Stabbing is...

- ► ... W[1]-hard for the parameter k if all rectangles are squares of the same size.
- ...in FPT for the parameter kif all rectangles are nonoverlapping squares of the same size.

Open:

▶ Is Rectangle Stabbing in FPT for the parameter k if all rectangles are nonoverlapping?

We know:

▶ Rectangle Stabbing is in FPT for the parameter k if all rectangles are nonoverlapping squares of the same size.

Open:

▶ Is there a polynomial-size kernel?

We know (not part of this talk):

► *d*-C1P-Set Cover and *d*-Dimensional Rectangle Stabbing with constant *d* are in W[1] for the parameter *k*.

Open:

► Are these problems in W[1] for the parameter d, k, or are they W[2]-hard?

We know (not part of this talk):

► *d*-C1P-Set Cover and *d*-Dimensional Rectangle Stabbing with constant *d* are in W[1] for the parameter *k*.

Open:

► Are these problems in W[1] for the parameter d, k, or are they W[2]-hard?

Thank you.