Parameterized Complexity of Stabbing Rectangles and Squares in the Plane #### Michael Dom¹ Michael R. Fellows^{2,3} Frances A. Rosamond^{2,3} ¹Institut für Informatik, Friedrich-Schiller-Universität Jena, Germany ²PC Research Unit, University of Newcastle, Australia **WALCOM 2009** ³Supported by the Australian Research Council and the Alexander von Humboldt-Foundation, Germany # Rectangle Stabbing # Rectangle Stabbing ### Rectangle Stabbing #### **Rectangle Stabbing** **Input:** A set R of axis-parallel rectangles, a set L of axis-parallel lines, a positive integer k. **Question:** Exists $L' \subseteq L$ with $|L'| \le k$ such that every rectangle from R is intersected by at least one line from L'? ## 3-Dimensional Rectangle Stabbing Generalization to *d* dimensions: *d*-Dimensional Rectangle Stabbing. ## 3-Dimensional Rectangle Stabbing Generalization to *d* dimensions: *d*-Dimensional Rectangle Stabbing. #### Set Cover #### **Set Cover** **Input:** A binary matrix M, a positive integer k. **Question:** Is there a set of at most k columns that hits a 1 in every row? #### Set Cover #### Set Cover **Input:** A binary matrix M, a positive integer k. **Question:** Is there a set of at most k columns that hits a 1 in every row? ### Rectangle Stabbing and Set Cover ### Rectangle Stabbing and Set Cover ### Variants of the Consecutive-Ones Property #### Restricted Variants of Set Cover 2-SC1P-Set Cover and Rectangle Stabbing are equivalent. #### Both problems are NP-complete. [Gaur et al., *J. Algorithms, '02*, Mecke et al., *ATMOS '05*, Dom and Sikdar, *FAW '08*] ### Parameterized Complexity ▶ Main idea: Measure complexity not only in input size, but also in an additional "parameter" k. ► Problem is *fixed-parameter tractable (FPT)* with respect to a parameter *k* problem is solvable in $f(k) \cdot n^{O(1)}$ time. Example: $O(2^k \cdot n^2)$ Not FPT: $O(n^k)$ ▶ W[1]-hardness: concept for parameterized intractability #### Known Results - ► Factor-d2^{d-1} approximation for d-Dimensional Rectangle Stabbing when all hyperrectangles are identical [Hassin and Megiddo, *Discrete Appl. Math., '91*] - ► Factor-*d* approximation for *d*-Dimensional Rectangle Stabbing [Gaur et al., *J. Algorithms, '02*] - ► Factor-*d* approximation for *d*-C1P-Set Cover [Mecke et al., *ATMOS '05*] - Approximation algorithms for 2-Dimensional Rectangle Stabbing when every rectangle has height or width one [Hassin and Megiddo, Discrete Appl. Math., '91, Kovaleva and Spieksma, ISAAC '01, SIAM J. Discrete Math., '06] - ➤ 3-Dimensional Rectangle Stabbing is W[1]-hard [Dom and Sikdar, FAW '08] - Special cases of Rectangle Stabbing are in FPT [Dom and Sikdar, FAW '08] - ▶ Open: Parameterized complexity of Rectangle Stabbing #### Our Main Results - ▶ Rectangle Stabbing is W[1]-hard. - ► Rectangle Stabbing is W[1]-hard if all rectangles are squares of the same size. - Rectangle Stabbing is in FPT if all rectangles are nonoverlapping squares of the same size. #### Our Main Results - ► Rectangle Stabbing is W[1]-hard. - ► Rectangle Stabbing is W[1]-hard if all rectangles are squares of the same size. - Rectangle Stabbing is in FPT if all rectangles are nonoverlapping squares of the same size. #### 2-SC1P-Set Cover **Input:** A binary matrix M with 2-SC1P, a positive integer k. **Question:** Is there a set of at most k columns that hits a 1 in every row? #### Parameterized reduction: ► Same basic idea as polynomial-time reduction: Reduce from a hard problem. $$(x,k) \rightsquigarrow (x',k')$$ ▶ New parameter must depend only on the old parameter: $$k' = f(k)$$ ▶ (Reduction may cost $g(k) \cdot n^{O(1)}$ time.) Reduction from the W[1]-hard problem Multicolored Clique. #### Multicolored Clique **Input:** A positive integer k and a k-colored undirected graph. **Question:** Is there a clique of size k? Reduction from the W[1]-hard problem Multicolored Clique. #### Multicolored Clique **Input:** A positive integer *k* and a *k*-colored undirected graph. **Question:** Is there a clique of size k? #### Reformulation of Multicolored Clique: [Fellows et al., manuscript, 2008] **Question:** Is there a set E' of $\binom{k}{2}$ edges and a set V' of k vertices such that - ► E' contains an edge of every "edge color", - V' contains a vertex of every color, and **Question:** Is there a set E' of $\binom{k}{2}$ edges and a set V' of k vertices such that - ► E' contains an edge of every "edge color", - ▶ V' contains a vertex of every color, and - $\blacktriangleright \{v,w\} \in E' \rightarrow v,w \in V' ?$ #### Approach for the reduction to 2-SC1P-Set Cover: - one column for every edge and every vertex - ▶ number of columns to select: $\binom{k}{2} + k$ - rows to enforce the three constraints - ► E' contains an edge of every "edge color", - ightharpoonup V' contains a vertex of every color, and - $\blacktriangleright \{v,w\} \in E' \rightarrow v,w \in V' ?$ | | Л_ | _ | | | blue
v ₇ v ₈ v ₉ | | |-----|-----|---|--|-----|--|--| | 1 1 | . 1 | 1 | | | | | | | | | | 1 1 | | | | | | | | | 111 | | | 1 | 1 | 1 | | 1 | | | | 1 | 1 | 1 | | | 1 | | | | | | | | | | Number of columns to select: $\binom{k}{2} + k$. - ► E' contains an edge of every "edge color", - ightharpoonup V' contains a vertex of every color, and - $\blacktriangleright \ \{v,w\} \in E' \ \rightarrow \ v,w \in V' \ ?$ |
{re | ed, | bl | ue} |
 | red |
blue | ı | |--------------------|----------------|----------------|------------------|------|-------------|--|---| |
e ₄ | e ₅ | e ₆ | e ₇ ` |
 | V_2 V_3 |
V ₇ V ₈ V ₉ | | | 1 | 1 | 1 | 1 | | | | | | | | | | | 1 1 | | | | | | | | | | 111 | | | 1 | | 1 | 1 | | 1 | | | | 1 | | 1 | 1 | | | 1 | | | | | | | | | | | Number of columns to select: $\binom{k}{2} + k$. | | {red, blue} | | | | red | | blue | | |-----|---|--|--|--------------|------------------|--|--|--------------| | | e ₄ e ₅ e ₆ e ₇ | | | | V_2 V_3 | | v ₇ v ₈ v ₉ | | | | 1111 | 111 | | | | | | | | | | | | | 1 1 | | 111 | | | | 111
111
1 11
1 11
1 1 1
11 1
111 1 | | | | 1
1
1
1 | | 1
1
1 | | | | | 1 1
1 1
1 1
1 1
1 1
1 1 | | | | | | | | Mia | hael Dom Univers | ität lana. Das | | and labelier | | | · · · | ≜ ▶ ∢ | | | | | | | { <u>red</u> , <u>blue</u> } | |---|---|------|---|--|---| |
<i>e</i> ₄ <i>e</i> ₅ <i>e</i> ₆ <i>e</i> ₇ | <i>e</i> ₄ <i>e</i> ₅ <i>e</i> ₆ <i>e</i> ₇ |
 | <i>V</i> ₂ <i>V</i> ₃ |
V ₇ V ₈ V ₉ |
\ldots e_4 e_5 e_6 e_7 \ldots | | 1111 | 1111 | | | | 1111 | | | | | 1 1 | 111 | | | 1
11
111
111
111 | | | | | 1 1 1
1 1
1
1
1
1 1 1
1 1 1 | | _ | 1
11
111
111
111
11 | | | | 1 1 1
1 1
1 1
1
1 1
1 1 1 1 | | 1 1
1 1 | 1
1 | | 1 | 1 | #col's to select $3 \cdot {k \choose 2} + k$ | |
$\{ red, $ | blue] | {red, blue | } | | red | ļ | blue | ļ | $ \begin{array}{c} $ | } | |-----------------------------------|-------------------------------|---|-------|------------|---|-----|--|-------|---|--------| |
e ₄ e ₅ | e ₆ e ₇ | <i>e</i> ₄ <i>e</i> ₅ <i>e</i> ₆ <i>e</i> ₇ | | | <i>v</i> ₂ <i>v</i> ₃ | | v ₇ v ₈ v ₉ | | e ₄ e ₅ e ₆ e ₇ | | | 1 1 | 1 1 | 1111 | | | | | | | 1111 | | | | | | | | 1 1 | | 111 | | 1111 | | | 1
1 1
1 1 | 1 | | | | | | | | 1 1 1
1 1
1 | | | 1 | 1 1
1 1
1 | | | | | | | | 1
11
111 | | | | | 1
11
111 | | | | | | | 111 | | | | | 111
11
1 | | | | | | | $egin{array}{c c} 1 \\ 1 \ 1 \\ 1 \ 1 \ 1 \end{array}$ | | | | 1 1
1 1 | 1
1 | | | 1 | | 1 | | #col's to se $3 \cdot {k \choose 2} + k$ | elect: | | Mic | chael Do | om, Universität | Jena: |
Rectan | gle Stabb | ing | I | b > - | [(2) | _ | | | {re | ed, | blue | ∦r€ | ed, | blue) | | | red | | blue | | | {re | d, | blue} | | |----------|---|----------------|-------------------------------|--------|----------------|-------------------------------|---|---|-------------|---|--|---|----------|-------------|----------------|-----------------|--| | | e_4 | e ₅ | e ₆ e ₇ | e_4 | e ₅ | e ₆ e ₇ | | | v_2 v_3 | | v ₇ v ₈ v ₉ | | | e_4 | e ₅ | $e_6 e_7$ | | | | 1 | 1 | 1 1 | 1 | 1 | 1 1 | | | | | | | | 1 | 1 | 1 1 | | | | | | | | | | | | 1 1 | | 111 | | | | | 1 1 | | | | $\begin{vmatrix} 1\\1\\1 \end{vmatrix}$ | 1 | 1
1 1
1 1 | | | | | | | | | | | 1
1 | _ | 1 1
1 1
1 | | | | | | 1 | 1 | | | | | | | | | | | | 1
1 1 | | | | | | | 1 | 1 | 1
1 1
1 1
1 1 | | | | | | | | 1
1
1 | 1 1 | 1 1
1 | | | | | | 1 1
1 1 | 1
1 | | | | | 1 | | 1 | | | | | o sel | | | | 1 | | | 1 | | | I | • | 1 | 1 | I | 1 | | J. 1 | \sim | , i r | | | | _ | | | | | | | | | | | | | |-------------|-------------------|------|-------------------|---------|--------|-----------|-----|--|----------|----------|--------|-------------------|------------| |
{re | d,blue | {re | d,blue | } | ļ | red | | blue | | | {re | d, blu | €} | | | $\overline{}$ | | $\overline{}$ | | | \sim | | V ₇ V ₈ V ₉ | | ı | | | \neg I | | 1 | 111 | 1 | 111 | | | | | | | | 1 | 111 | | | | | | | | | 1 1 | | 111 | | | | | | | 1
1
1 | 1
1 1
1 1 1 | | | | | | | | | | 1 | 1 1 1
1 1
1 | | | | 11 | | | | | | | | | | 1 | 1
1 1 | | | | | _ | 1
1 1
1 1 1 | | | | | | | | 1 | 1 1 1
1 1
1 | | | | | | 1 1
1 | | | | | | | | 1
1 | 1 1 | | | | 1 1
1 1 | 1 | | | | 1 | | 1 | | | | | | | | Michael Do | m, L | Iniversität | Jena: I | Rectan | gle Stabb | ing | | . | - ₽ | | > ∢≣ | ▶ ■ | | , | $\{$ red $,$ | Ы | ue} | $\{$ red $,$ | Ы | ue) | | | red | ı | blue
v ₇ v ₈ v ₉ | ļ | | {red | , bl | ue} | } | |------------|-------------------------------|-----------------------|-------|--------------------|-----------------------|----------------|---------|--------|-------------|-----|--|-----|----------|-----------------|-----------------------|-------------|----------| | | e ₄ e ₅ | <i>e</i> ₆ | e_7 | $e_4 e_5$ | <i>e</i> ₆ | e ₇ | | | v_2 v_3 | | V ₇ V ₈ V ₉ | | | $e_4 e_5$ | <i>e</i> ₆ | e_7 | | | | 1 1 | 1 | 1 | 1 1 | 1 | 1 | | | | | | | | 1 1 | 1 | 1 | | | | | | | | | | | | 1 1 | | 111 | | | | | | | | | 1
11
11
11 | | 1 | | | | | | | | | | | 1 | 1 | 1
1
1 | | | | 1 | 1 | 1 | | | | | | | | | | | 1 1 | 1 | | | | | | | | 1
11
11
1 | | 1 | | | | | | | | 1
1
1 1 1 | 1 | | | | | | 1 | | 1 | | 1 | | | 1 | | | | | 1 1 | 1 | | | | | Mi | 1 | | 1 | /ersi | tät | lena: l | Rectan | gle Stabb | ing | 1 | - · | | (重) | | 를 → | Ē | |
{re | d, | blι | ıe} | {re | d, | blue) | · · · | | red | ļ | blue
v ₇ v ₈ v ₉ | ļ | | {re | ed, | blue | } | | |-------------|----------------|------------------|----------------|-------------|-------|-------------------------------|---------|--------|-------------|-----|--|------------|-----|----------------|----------------|-----------------|---|---| |
e_4 | e ₅ | e ₆ (| e ₇ | e_4 | e_5 | e ₆ e ₇ | | | v_2 v_3 | | V ₇ V ₈ V ₉ | | ļ | e ₄ | e ₅ | $e_6 e_7$ | | | | 1 | 1 | 1 : | 1 | 1 | 1 | 11 | | | | | | | | 1 | 1 | 1 1 | | | | | | | | | | | | | 1 1 | | 111 | | | | | | | | | 1
1
1 | | 1
1 :
1 : | | | | | | | | | | | | 1
1
1 | 1 | 1 1
1 1
1 | | | | | | | | 1
1
1 | _ | 1
1 1
1 1
1 1 | | | | | | | | 1
1
1 | 1 | 1 1
1 1
1 | | | | | | 1 :
1 : | 1
1 | 1
1 | | | | | 1 | | 1 | | | | | | | | | | Mic | hael | Do | m, l | Jniv | versität . | Jena: I | Rectan | gle Stabb | ing | 4 | b , | - → | 4 3 | Ţ | (≣) | ₽ | 6 | |
{re | d, | blue] | {re | d, | blue) | · |
re | ed | | b | lu | е |
 | {red | , blue | } | |-------------|----------------|---|-------------|----------------|-------------------------------|---|-----------|------------|--|-------|-----------------------|------------|------|------------------|-------------------|---| |
e_4 | e ₅ | $e_6 e_7$ | e_4 | e ₅ | e ₆ e ₇ | |
v_2 | <i>V</i> 3 | | v_7 | <i>V</i> ₈ | V 9 |
 | e ₄ e | $e_6 e_7$ | | | 1 | 1 | 11 | 1 | 1 | 1 1 | | | | | | | | | 1 : | 111 | | | | | | | | | | 1 | 1 | | 1 | 1 | 1 | | | | | | 1
1
1 | 1 | 1 1 | | | | | | | | | | | | 1 | 1 1 1
1 1
1 | | | | | 1 1
1 | | | | | | | | | | | | 1 :
1 : | 1 | | | | | | 1
1
1 | 1 | 1 1 | | | | | | | | | 1 | 1 1 1
1 1
1 | | | | | | | | 1 1
1 | | | | | | | | | 1 :
1 : | l
l 1 | | | | | $\begin{array}{c} 1 \ 1 \\ 1 \ 1 \end{array}$ | 1 1 | | | | 1 | | | | 1 | {red, l | $\frac{\text{plue}}{e_6} \underbrace{\{\text{red}, \text{blue}\}}_{e_6} \underbrace{\{e_6, e_7\}}_{e_6} e_7\}}_{e_7} \underbrace$ | } | __ | red | | blue | ļ | | {red, blue | } | |------------------------------|--|---------|---------------|--------|----|--|------------|------------|---|---| | $ \dots e_4 e_5 \epsilon$ | $e_6 e_7 e_4 e_5 e_6 e_7$ | ` | v | 2 V3 | | v ₇ v ₈ v ₉ | | | e ₄ e ₅ e ₆ e ₇ | | | 111 | 1111 | | | | | | | | 1111 | | | | | | | 1 1 | | 111 | | | | | | | 1
1 1
1 1
1 1 | | | | | | | | 111
11
1
1
11
111 | | | | 1
11
111
111
111 | | | | | | | | 111
11
1
1
11
111 | | | | 1 1 1
1 1 1 | | | 1 | | 1 | | | | | | Mich | nael Dom, Universität | lena: F | Rectangle | Stabbi | nσ | ∢ | - - | a • | ∢ ≣ ≯ ∢ ≣ ≯ | 重 | #### **Theorem** 2-SC1P-Set Cover, 2-C1P-Set Cover, and Rectangle Stabbing are W[1]-hard with respect to the parameter k. With a similar reduction: #### **Theorem** Rectangle Stabbing is W[1]-hard with respect to the parameter k if all rectangles are squares of the same size. ### Our Main Results - Rectangle Stabbing is W[1]-hard. - Rectangle Stabbing is W[1]-hard if all rectangles are squares of the same size. - Rectangle Stabbing is in FPT if all rectangles are nonoverlapping squares of the same size. #### Restrictions: - ▶ There is a number *b* such that each rectangle is intersected by exactly *b* vertical lines and exactly *b* horizontal lines. - No two rectangles are intersected by a common vertical line and a common horizontal line. Use data reduction rules: 1. Delete "dominated" lines. Use data reduction rules: 1. Delete "dominated" lines. Use data reduction rules: 1. Delete "dominated" lines. Use data reduction rules: - 1. Delete "dominated" lines. - 2. Delete "unnecessary" rectangles. Use data reduction rules: - 1. Delete "dominated" lines. - 2. Delete "unnecessary" rectangles. Use data reduction rules: - 1. Delete "dominated" lines. - 2. Delete "unnecessary" rectangles. Properties of reduced problem instances: 1. At each vertical line, there "ends" at least one rectangle. Properties of reduced problem instances: - 1. At each vertical line, there "ends" at least one rectangle. - 2. At each vertical line, there end at most k + 1 rectangles. Properties of reduced problem instances: - 1. At each vertical line, there "ends" at least one rectangle. - 2. At each vertical line, there end at most k + 1 rectangles. - 3. No rectangle starts later *and* ends earlier than another one. Properties of reduced problem instances: #### Lemma Either each rectangle is intersected by at most 2k + 1 vertical lines or there is a vertical line that intersects more than k rectangles, such that each of these rectangles is intersected by at most 2k+1 vertical lines. #### Theorem Rectangle Stabbing can be solved in $(4k+1)^k \cdot n^{O(1)}$ time if all rectangles are nonoverlapping squares of the same size. We know: Rectangle Stabbing is... - ► ... W[1]-hard for the parameter k if all rectangles are squares of the same size. - ...in FPT for the parameter kif all rectangles are nonoverlapping squares of the same size. ### Open: ▶ Is Rectangle Stabbing in FPT for the parameter k if all rectangles are nonoverlapping? #### We know: ▶ Rectangle Stabbing is in FPT for the parameter k if all rectangles are nonoverlapping squares of the same size. ## Open: ▶ Is there a polynomial-size kernel? We know (not part of this talk): ► *d*-C1P-Set Cover and *d*-Dimensional Rectangle Stabbing with constant *d* are in W[1] for the parameter *k*. ### Open: ► Are these problems in W[1] for the parameter d, k, or are they W[2]-hard? We know (not part of this talk): ► *d*-C1P-Set Cover and *d*-Dimensional Rectangle Stabbing with constant *d* are in W[1] for the parameter *k*. ### Open: ► Are these problems in W[1] for the parameter d, k, or are they W[2]-hard? Thank you.